
Planning Equational Verification in CCS

Raúl Monroy
ITESM, Estado de México

Computer Science Department
Atizapán, México, 59296

raulm@campus.cem.itesm.mx

Alan Bundy Ian Green
Department of Artificial Intelligence

University of Edinburgh
Edinburgh EH1 1HN, UK

A.Bundy,I.Green @ed.ac.uk

Abstract

Most efforts to automate formal verification of commu-
nicating systems have centred around finite-state systems
(FSSs). However, FSSs are incapable of modelling many
practical communicating systems and hence there is interest
in a novel class of problems, which we call VIPS, involving
value-passing, infinite-state, parameterised systems. Exist-
ing approaches using model checking over FSSs are insuf-
ficient for VIPSs, due to their inability both to reason with
and about domain-specific theories, and to cope with sys-
tems having an unbounded or arbitrary state space.

We use a Calculus of Communicating Systems
(CCS) [13] with parameterised constants to express
and specify VIPSs. We use the laws of CCS to conduct
the verification task. This approach allows us to study
communicating systems, regardless of their state space, and
the data such systems communicate. Automating theorem
proving in this system is an extremely difficult task.

We provide automated methods for CCS analysis; they
are applicable to both FSSs and VIPSs. Adding these meth-
ods to the Clam proof-planner, we have implemented an
automated theorem prover capable of dealing with prob-
lems outside the scope of current methods. This paper
describes these methods, gives an account as to why they
work, and provides a short summary of experimental res-
ults.

1. Introduction

Most efforts to automate formal verification of commu-
nicating systems have centred around finite-state systems
(FSSs). A FSS is one in which system behaviour can be rep-
resented by means of a transition graph with finitely many
nodes, and where value passing during interaction is dis-

The research reported in this paper was supported by EPSRC grant
GR/L/11724. First author was funded by grant SEP-REDII.

allowed; moreover, the number of system subcomponents
must be known and fixed. However, FSSs are incapable
of modelling many practical communicating systems and
hence there is interest in a novel class of problems, which
we call VIPS, involving value-passing, infinite-state, para-
meterised systems.

Existing approaches using model checking over FSSs are
successful. However, they are insufficient for VIPSs. Iron-
ically, the key problem with these approaches has nothing
to do with state space explosion, but instead has to do with
their inability to reason about systems with an unbounded or
arbitrary state space; furthermore, they are unable to express
and reason within domain-specific theories. Thus, there is a
need for new automation paradigms, not based on an explor-
ation of state space.

In this paper, we use a Calculus of Communicating Sys-
tems (CCS) [13] with parameterised constants to express
and specify VIPSs. Moreover, we use the laws of CCS
to conduct the verification task. This so-called equational
approach is modular and extensible: we can add or remove
laws at will; furthermore, we can include domain-specific
theories. Thus the equational approach offers a unified
framework in which we can study a wide variety of systems
and the data such systems communicate.

Unfortunately, the equational approach poses signific-
ant search control issues, giving rise to an extremely dif-
ficult automation problem. In particular, the use of exhaust-
ive rewriting without subtle heuristic control is not going
to work. This is because the CCS laws often need to be
used so that simple terms are replaced with more com-
plex ones: combinatorial explosion is inevitable. To com-
pound the problem, VIPSs often contain recursive functions
and hence, a way to automate inductive theorem proving is
required.

This paper makes two key contributions: First, it
provides general knowledge heuristics to drive the search
for a verification proof in CCS; these heuristics have the
desirable quality of being applicable in the study of both
FSSs and VIPSs. Second, the paper shows that by adding

this heuristic control to an existing proof plan for induct-
ive theorem proving (described in [2] and implemented in
the Clam [5] proof planning system), we can build a auto-
matic verification planner capable of dealing with problems
outside the scope of existing verification tools. In this way
we move to the automatic verification of CCS systems that
previously required human attention.

The rest of this paper is organised as follows: 2
describes CCS: syntax, semantics, process equivalence, and
the proof system used to conduct the verification task. 3
illustrates the kind of proof we shall automate, while high-
lighting significant search control issues. 4 gives a brief
introduction to proof planning, the search engine and the
framework where we capture general knowledge to auto-
mate search guidance. 5 is the core of this paper; it intro-
duces ‘Equation’ a heuristic for guiding search in this
context, and shows a simple uniting example. 6 summar-
ises results and compares Equation to rival techniques.
Finally we draw conclusions in 7.

2. Basic CCS plus Parameterised Constants

Terms of CCS represent processes; processes have their
own identity, circumscribed by their entire capabilities of
interaction. Interactions occur either between two agents,
or between an agent and its environment; they are commu-
nicating activities and referred to as actions. An action is
said to be observable, if it denotes an interaction between an
agent and its environment, otherwise it is said to be unob-
servable. This interpretation of observation underlies a pre-
cise and amenable theory of behaviour: whatever is observ-
able is regarded as the behaviour of a system. Two agents
are considered equivalent if their behaviour is indistinguish-
able to an external observer.

2.1. Syntax

The set of Actions, , contains the set of
names, , the set of co-names, , and the unobservable
action , which denotes process intercommunication.
and are both assumed to be countable and infinite. Let

range over , and over . The set of
labels, , is defined to be ; hence, . Let

range over . Let , , , , . . . denote subsets
of .

is the set of agent constants, which refer to unique
behaviour and are assumed to be declared by means of the
definition facility,

def
. Let range over . Con-

stants may take parameters. Each parameterised constant
with arity is assumed to be given by a set of defining equa-
tions, each of which is of the form:

def
,

where may contain no process variables, and no free

value variables other than .

Values, in general, might be of any specified type. Value
expressions and boolean expressions may contain value-
variables , value-constants , and any oper-
ators we may require, e.g., even . These exten-
sions (which are formally no more expressive that standard
CCS) allow a more succinct and natural expression of pro-
cess behaviour.

The set of agent expressions, , is defined by the follow-
ing abstract syntax:

where stands for a relabelling function.1 Informally, the
meaning of the combinators is as follows: Prefix, , is
used to convey discrete actions. Summation, , disjoins
the capabilities of the agents , ; as soon as one
performs any action, the others are dismissed. Summation
takes an arbitrary, possibly infinite, number of process sum-
mands. Here, Summation takes one of the following forms:
i) The deadlock agent, 0, capable of no actions whatever;
0 is defined to be ; ii) Binary Summation, which
takes two summands only, is ; iii)

Indexed Summation over sets,2

; and iv) Infinite Summation over natural numbers.
The last two forms of Summation are introduced in order to
specify parameterised behaviour and data communication.

Parallel Composition, , is used to express concurrency:

denotes an agent in which and may proceed
independently, but may also interact with each other. The
Relabelling combinator, , is used to rename port labels:

behaves as , except that its actions are renamed as
indicated by . Restriction, , is used for internalising
ports: behaves like , except that it cannot execute
any action .

2.2. Semantics

Processes are given a meaning via a labelled transition sys-
tem3 , where is the smallest
transition relation given by the following inference trans-
ition rules. Whenever , is said to be an -

1These functions map actions into actions; stands

for the relabelling function which sends to and to , for
, and to , otherwise. By convention, .

2Sets and set-theoretic operations are implemented using lists and sim-
ulated by operations on lists, respectively.

3 means the set of such that .

derivative (or a derivative) of .

Act Com

Com Com

Con def Sum

Rel Res

The interpretation of these rules is straightforward so we
shall only describe Com . It stands for the possibility of
two agents interacting with each other by the execution of
complementary actions, that is, synchronisation. Notice
that on synchronisation the agents in question change state
simultaneously and Parallel Composition is preserved. Syn-
chronisation actions are all indistinguishable from each
other and so they are all denoted by the single action .

2.3. Process Equivalence and Bisimulation

Different interpretations of what is observable give rise to
different equivalence relations. Observation congruence is
the only relation that supplies two essential ingredients for
process analysis: the abstraction of internal actions, and
the property of being a congruence. Observation congru-
ence resorts (as do all other behavioural equivalences), to
the notion of bisimulation, which [13] defines as follows:

Definition 1 (Bisimulation) A binary relation, , over
processes is a bisimulation if implies, for all

,

i) Whenever and then, for some ,
and , and similarly for and

interchanged;

ii) Whenever then either, for some ,
and , or , and similarly for
and interchanged.

where means . is said
to be an -descendant (or a descendant) of , whenever

.

The union of all bisimulations yields bisimilarity: and
are bisimilar, written , if for some bisim-
ulation . Bisimilarity is not a congruence relation: is
known to be the only operator which breaks equivalence.
The largest congruence relation included in is observa-
tion congruence [13]:

0
0

(2) Expansion 0

Table 1. The axioms

Definition 2 (Observation congruence) and are
equal or observation-congruent, written , if for all

, whenever then, for some ,
and , and similarly for and interchanged.

Most properties that relate and are captured in Hen-
nessy’s theorem [13, page 156]:

iff or or (1)

Observation congruence is the relation selected to achieve
the verification task. The proof system by which proofs are
produced is shown below.

2.4. The Proof System

The proof system we use combines existing axioms for
some classes of process behaviour: FSSs [13], value-
passing systems [9], Basic Process Algebra [11] and Basic
Parallel Processes [7], and adds to the combined axioms
structural induction, or induction for short. A judgement
is an expression of the form , where is a set of for-
mulae. Its intended meaning is: the formula is provable
in the proof system under the assumptions . Often, takes
the form , where is a boolean expression, and

and are terms of the same type; if the type relates to
CCS terms, then, the intended meaning of is: for
every interpretation that satisfies .

Table 1 shows the set of basic axioms; it comprises
axioms for 0, Prefix, Binary Summation, Indexed Sum-
mation over natural numbers, Parallel Composition, and
expansion. Expansion allows us to compute all process
transitions. Algebraically, it is written as follows [13, page
69]: Let be an abbreviation of the composite process

, with , then

(2)

where () abbreviates

(). Note that, in general,

Ac

nat

nat nat

nat

nat list member

nat list

Table 2. Rules for manipulating process terms

each might take the form , for some relabelling
function .

The inference rules are divided into three classes: rules
for manipulating connectives and quantifiers, general pur-
pose rules, and rules for manipulating process terms.
The rules for manipulating connectives and quantifiers are
Gentzen’s sequent calculus (though they take their names
from Prawitz’s natural deduction). General purpose rules
include induction, cut, rewrite-rule, - and - conversion.
We only give the rules for manipulating process terms,4 and
omitting the usual rules for reflexivity, symmetry, transitiv-
ity, and substitution of equality. This completes our revision
on the logic used throughout this paper. Now we consider
proof planning.

3. Program Verification

We use CCS both as a programming language and as a spe-
cification language. Thus, the properties that we wish pro-
cesses to satisfy need to be expressible as processes them-
selves; moreover, such properties should convey some (pre-
sumably useful) behaviour, which might not be recursive.5

Behaviour is often succinctly captured using only Prefix and
Binary Summation, as they provide no hint as to the internal

4For the sake of brevity, we omitted the free-variable (FV) side condi-
tion, FV , in Rules , for , of Table 2.

5Elsewhere, we show how to deal with the verification problem in the
context of recursive processes by means of unique fixpoint induction.

working of a system. The sorts of processes we use as spe-
cifications take the form , where each , for all

, is either a prefixed process, or an indexed
sum (), possibly infinite, of prefixed processes. We call
these kinds of expressions sum forms. For example, to spe-
cify that a buffer of size , at any state, may input or output
an element, provided that it is neither empty nor full, we
write:

Buf
def

Buf Buf

The systems under consideration, on the other hand, are
arbitrary CCS terms. They reflect, at the required level of
detail, all concurrency issues. What is more, they may con-
tain recursive functions, which are used to capture the struc-
ture of one or more process subcomponents. We call these
kinds of expressions concurrent forms. For example, we
can implement a buffer of size by linking buffers of
size 1:

where
def

def

and where
def

. Then, for
example, we could attempt to verify that if we link a cell
(holding an element) to a generic buffer (holding ele-
ments), then, by means of internal communication, the ele-
ment held by the cell would propagate leaving it empty,
returning a buffer holding elements:

nat Buf Buf (3)

We will return to this example in 5.3. Having defined the
verification problem, we attempt to give the reader a flavour
as to the difficulties of automating proof search. In design-
ing a proof strategy we are faced with two major challenges:

1. Termination. There are two sources for non-
termination: i) Expansion can be applied infinitely
many times, since it yields a process sum in which each
summand contains a concurrent form; and ii) Rewrit-
ing with either rules of the form , or

rules that come from equations used both ways round
is in general necessary (see for example [14]).

2. Controlled the use of the expansion law. Being an
axiom scheme, the expansion law can be instantiated
in many different ways, and hence can be applied to
any proper subexpression. This increases the search
branching rate.

These issues explain why radical measures are called for;
yet they are further magnified in the presence of recursive
functions. Induction is required to reason about recursive
functions. Unfortunately, this makes automated verification

Method Description

elementary tautology checker
equal applies a hypothesis of type equality
eval def applies rewrite rules
generalise generalise common subterms
normalise normalises sequent formulae
wave applies wave-rules
casesplit splits a proof into cases
fertilize appeals to induction hypothesis
induction applies structural induction

Table 3. The standard method data-base

much harder, since it adds to the problem the difficulties of
automating inductive theorem proving—issues here include
deciding when to apply induction, how to select an appro-
priate induction scheme, and how to guide the search in
inductive cases so that an appeal to the induction hypothesis
can be made.

Fortunately, as discussed below, inductive proof plan-
ning is, at least partially, an answer to these problems.

4. Proof Planning

Proof planning [3] is a meta-level reasoning technique,
especially developed as a search control engine to automate
theorem proving. A proof plan captures general knowledge
about the commonality between the members of a proof
family, and is used to guide the search for more proofs in
that family. Moreover, proof planning provides a way to
incorporate proof search strategies, tailored to a particular
domain. Proof planning has been successfully applied in
several different domains, including the use of formal meth-
ods for program synthesis [1] and hardware verification [6].

Methods are the building-blocks of proof planning. A
method is a high-level description of a tactic, containing an
input formula, preconditions, output formulae, and effects
or postconditions. A method is applicable if the current
goal matches the method input formula and the method
preconditions hold. Preconditions specify properties of
the input formula, describing under what circumstances it
is appropriate to apply the method. The postconditions
describe the effect of the associated tactic, without run-
ning the tactic proper. (Preconditions and postconditions
are expressed in a meta-logic, where a subset of Prolog is
the meta-language.) The ultimate result of method applic-
ation is the output formulae, a list containing the new sub-
goals, if any (when the list is empty, the method is said to be
terminating). Table 3 shows Clam’s standard method data-
base. Methods are composed into proof plans using tradi-
tional planning techniques. The proof planner develops the

plan by selecting a method applicable to the current goal.
If no methods are applicable the planner backtracks. In the
experiments reported here Clam used a depth-first planning
strategy.

Proof planning involves the use of the heuristic known
as rippling [4], which guides the search for a proof of
inductive cases and supports the selection of appropri-
ate induction schemata. Rippling guides the manipulation
of the induction conclusion to enable the use of a hypo-
thesis or fertilization. The key idea behind rippling lies
in the observation that an initial induction conclusion is
a copy of one of the hypotheses, except for extra terms,
e.g., the successor function , wrapping the induction vari-
ables. By marking such differences explicitly, rippling can
attempt to place them at positions where they no longer pre-
clude the conclusion and hypothesis from matching. Rip-
pling is therefore an annotated term-rewriting system. It
applies a special kind of rewrite rules, called wave-rules,
which manipulate the differences between two terms (wave-
fronts), while keeping their common structure (skeleton)
intact. (Readers are referred to the MRG home page,
http://dream.dai.ed.ac.uk, for further details.)

This completes our revision of proof planning. We are
now ready to introduce Equation, the central contribution
of this paper.

5. The Equation Method

Given the goal , Equation aims at transforming
into ; accordingly, we call and the source and target,
respectively. Equation approaches the problem in two
steps: i) the verification that both source and target offer
the same initial capabilities of interaction; and ii) the veri-
fication that, after action execution, and evolve into
equivalent agents.

The source of inspiration of this two-step approach is
situated in the definition of observation congruence (Defin-
ition 2). The first step, called local, involves and

, while the second one, called global, involves their
derivatives. This observation has been used to define
Equation, as illustrated below.

5.1. The Sub-method local

The aim of local is to transform the goal so that the
source, , and the target, , satisfy the following condition:

() for all , and have the same number of
process summands with prefix .

Upon local success, and are proved to offer the same
immediate possibilities for interaction: () implies that, for
all , has an transition, written , if and
only if does, written .

To fulfill (), first we transform into a sum form, and
next we balance the resulting equation, with respect to its
weight:

Definition 3 (Weight) Let be a sum form, possibly
empty. The weight of , written weight , is the num-
ber of summands in , each indexed sum, possibly infinite,
counting as one process summand.

Definition 4 (Balanced equation) Let and be sum
forms, possibly empty. Then is said to be a balanced
equation if and only if weight =weight ; otherwise, it
is said to be unbalanced.

So, we make use of two properties of equality: expansion
(2), and (a stronger version of) the absorption lemma [10]
(see below). So, local is split into two methods,
Expansion and Absorption.
Expansion enables the transformation of a concurrent

form into a sum form. so it is applicable only when the
target is a sum form, but the source is not. This avoids
repeated use of Expansion. We omit the definition of
Expansion and give our attention to Absorption.

5.1.1. Absorption

One condition for Absorption to be applicable is that the
weight of the source must be greater than the weight of the
target. On each application, Absorption removes one of
the source’s summands, hence decreasing its weight.

The absorption property asserts that whenever can do
an action, accompanied by several actions, to reach

, then it can do the same without them [13, page 64]: If
then . Bearing this in mind, it

should be apparent that Absorption’s applicability pre-
conditions also involve the identification of two of source’s
subexpressions, as indicated below:

Definition 5 (Solvent, Absorbent, and Excess) Take to
be a sum form such that , and consider the expres-
sion . We call solvent; reciprocally, we call
the excess. Furthermore, the absorbent is a top-level sum-
mand of capable of absorbing .

Once the absorbent and the excess have been classified,
Observant [14] is used. Observant is a decision pro-
cedure for transforming into , provided that

. Observant is an annotated term rewriting sys-
tem; the annotations are used to capture meta-level informa-
tion that carefully directs proof search, while giving an intu-
itive account about why and how rewriting is expected to
work. Observant is terminating and complete. Figure 1
depicts the definition of Absorption.

By using Absorption, we know precisely when we
can remove a summand; by using Observant, we are cer-
tain that the summand will be removed. Thus we reduce
proof search while avoiding non-termination.

Input:
Preconditions:

weight greater , absorbent
irrelevant smnd ,

Effects: absorbs
Output:
Meanings of the meta-logic (Prolog) predicates:

weight greater : that the weight of is
greater than the weight of .
absorbent : that , a
subprocess of that appears at position , is an
absorbent w.r.t. .
irrelevant smnd : , a
subprocess of at position , is excess of .
absorbs is as except
that subprocess has been absorbed by
subprocess , by means of Observant.

Figure 1. The Absorption Method

5.2. The Sub-method global

global is used only to complete the search task initiated
by local. It is concerned with the proper association of
each summand of with only one summand of . An
association is said to be proper, if it leads to a proof of the
associated expressions. This, of course, cannot be decided
without completing the proof.
global distinguishes two cases, according to the

weight of either side of the equation: unary weight equa-
tions, and multiple weight equations.

5.2.1. Action

Action is concerned with goals of the form .
To prove one such goal, we have to prove ; but, by
Hennessy’s theorem (1), to prove , we may prove
that either , , or . To resolve
which of these OR-branches we should pursue first, we use
a look-ahead strategy, based on process behaviour, namely:
Let , and , then
i) If and if the number of transitions of
is greater than or equal to those of , then select ; and
ii) If the condition above does not hold and if

, then select .

5.2.2. Goalsplit

Goalsplit is concerned with the case dual to that of
Action. It divides a goal into a conjunction of subgoals,
each of the form , hence enabling Action.
When global fails, the verification planner will back-

track. Backtracking occurs rarely in the context of determ-
inate agents, where behaviour is always predictable.

The Equation methods should be added to the stand-
ard method data-base (see Table 3), and placed before
wave. The rational being that Equation is seen as an
extension to symbolic evaluation, eval def, only that
it allows us to reason about CCS agents. Furthermore,
eval def must be extended with the rewrite rule set
extracted from the axioms (Table 1), in the direction left
to right.

5.3. A Worked Example

In this section, we show one example verification problem
uniting the use of the Equation methods, as well as their
interaction with each other and other methods of inductive
proof planning. Consider again (3). We assume the follow-
ing rules:

Buf Buf (4)

Buf

Buf Buf (5)

false (6)

(7)

(8)

To attempt to prove (3), Clam suggests a one step induction
on , since does not occur at recursive positions in the
definition of Buf. Let us look into the proof steps of each
induction subgoal.

5.3.1. Base Case

The base case initially takes the form:6

nat Buf Buf

Symbolic evaluation, together with normalisation, simpli-
fies this equation to

nat Buf Buf

Now it is local’s turn: while the target is a sum form, the
source is a concurrent form. Expansion is therefore in
order, leaving a trivially provable subgoal.

Buf Buf

elementary closes this proof branch tree; so, the proof
search engine gives attention to the step case.

6In what follows, ellipsis are used to denote expressions that remain
unchanged.

5.3.2. Step Case

The step case has the schematic form:

Buf Buf (9)

nat Buf (10)

Buf

We shall omit that part of the story relevant to the induct-
ive proof plan, and concentrate on what is original about our
work. Clam ends up with a number of subgoals, which arise
according to the case analysis suggested by the side condi-
tions of the rewrite rules. We consider the following case
only, as the others are just as easy and of the same pattern.

Case Consider then the goal

Buf Buf

At this point, Expansion is applicable, leaving a goal of
the form:7

Buf Buf

Now, fertilisation is applicable, modulo the ante-
cedent of the implication formula; so, it asks for a proof
of the proviso . Proof planning
deals with the new proof obligation. It also proof plans the
main result as follows. By using (9), as a rewrite rule from
left to right, it gets the following induction conclusion:

Buf Buf

Buf

Simplification, using eval def, discards the internal
action, leaving a formula where Absorption’s applicab-
ility preconditions hold. Buf is regarded
as absorbent, while Buf is regarded as irrelevant
summand. Furthermore, the absorbability test succeeds, for

Buf Buf

Absorption will therefore get rid of the irrelevant sum-
mand, leaving

Buf Buf

7It is worth noting that Expansion respects the rippling. That is,
Expansion is applied to an annotated term if and only if the expanded
term can be annotated so that the skeleton is preserved, and the rippling
termination measure is decreased.

Further simplifications are in order; this time Action
strips off the prefixes, while a cancellation operation elim-
inates the linking operator, yielding

Buf Buf

which Expansion further transforms, resulting in a read-
ily provable equation.

6. Results and Comparison to Related Work

There are different grounds upon which the performance of
reasoning systems can be judged; according to [3], the most
important evaluation criteria are generality, and expectancy.
Generality means usefulness in a large number of examples
amongst the intended proof family. Expectancy pertains to
the ability of predicting the successful outcome of a proof
plan: there should be a story about why the technique
works. More subjective metrics can also be considered.
Two examples are the succinctness of the description of a
proof plan, and the quality of proofs yielded by a plan, e.g.,
naturalness, readability, length, etc. Naturally, efficiency
can be an evaluation criterion too. In the assessment of
the proposed verification plan, emphasis will be given to
expectancy and generality, though figures concerning plan-
ning CPU time will also be enumerated.

5 implicitly provided a discussion of expectancy: it
includes an account as to why Equation should work.
Moreover, it has initiated already our attempt to evidence
the generality of the verification plan by showing its beha-
viour on a a worked example. As far as generality is con-
cerned, this section takes a step further: it provides empir-
ical evidence in the form of results obtained from testing the
plan on a set of examples. Naturally, for this to be mean-
ingful, the test set must be representative. To guarantee
representativeness, we kept the examples as dissimilar and
unbiased as possible, gathering them from different sources.
The system was developed with a set of examples entirely
disjoint from the testing set presented here.

In the next section we summarise some of both the exper-
imental work and the results obtained throughout our invest-
igations.

6.1. Some Illustrative Example Conjectures

Table 4 gives some of the example systems with which we
tested Clam. For each item, we provide the definition of the
system, together with the definition of its subcomponents.

Table 5 shows some of the conjectures used in the test
set. Considering the whole test set, which includes more
than 30 conjectures, the success rate of Clam was 86%,
with an average total elapsed planning time of 226 seconds,
and standard deviation of 192. The test was run on a

Solbourne 6/702, dual processor, 50MHz, SuperSPARC
machine with 128 Mb of RAM. The operating system, Sol-
bourne OS/MP, is an optimised symmetric multi-processing
clone of SunOS 4.1.

The full test set, including Clam and the methods for
CCS verification, is available upon request from the first
author.

6.2. Comparison

Clam found a proof plan on all the test cases shown in
table 5, non of which can even be input to any other auto-
mated tool. Most of the verification conjectures included in
the test set remain outside the scope of current automatic
verification tools. For example, the Concurrency Work-
bench [8] is restricted to a very simple language. Value-
passing, even if confined to finite data domains, is not dir-
ectly expressible. By contrast, we model parameterised
behaviour and consider infinite Summation.

[11, 12] have shown that over normed-BPA and
normed-BPP is decidable in polynomial time; their
algorithms are special purpose; they cannot be used to
analyse FSS. This is in contrast with our method, which
attempts to provide a unified verification framework. The
algorithms of [11, 12] all deal with the equivalence prob-
lem, provided the input processes are of the same and of
the intended class; they cannot handle the verification prob-
lem, since parameterised specifications are not BPA, or BPP
terms. Conversely, while the verification plan deals with
the verification problem, it cannot handle the equivalence
of arbitrary BPA, or BPP terms. Hence, in this respect, our
work and the work of [11, 12] are complementary.

The symbolic bisimulation method is an extension to the
bisimulation method. It adds a means for modelling and
analysing value-passing agents. [9] shows that symbolic
bisimulation equivalence is decidable; naturally, this res-
ult is relative to the decidability of proving that the cur-
rent interpretation is satisfiable. In this respect, the sym-
bolic bisimulation method is bound to rely upon external
theorem provers, through which it could discharge these
extra problems. In contrast, providing a unified verification
framework has been one of the main emphases of our work.
Moreover, while we are able to deal with infinite-state and
parameterised systems, nor are Hennessy and Lin; nor have
they considered the use of primitive recursive functions to
represent the structure of a system at any state during exe-
cution. However, we include no truly value-passing mech-
anism, but a modest mechanism, centred around the use of
Summation, and a partial translation of full CCS into basic
CCS that simulates value-passing.

System Agents

1

def

def

def

def

2

half

def

def

def

def

def

def

3
nil

def

nat
def

nat
def

nat
def

4
def

def

def

def

def

5
def def

6

def

def

def

def

def

Table 4. Process definitions

7. Conclusions

We have investigated the use of proof planning for problems
of automatic verification, in the context of CCS. We have
conducted the verification task using equational reasoning,
and centred on value-passing, infinite-state, parameterised
systems (VIPSs).

To reason about such systems, we have advocated the use
of induction in order to exploit the structure and/or the beha-
viour of a system during its verification. To automate this
reasoning, we have used proof plans for induction—built
within Clam, and extended with special CCS proof plans.
We have validated our working hypotheses, which we char-
acterise by the following list of contributions:

1. We have captured and formalised general knowledge

of a family of CCS proofs;

2. We have shown that the heuristics developed in this
paper, all of which use meta-level information, provide
a means for guiding the search for CCS verifications,
significantly reducing the search space;

3. We have shown that by including the heuristics men-
tioned above, inductive proof planning can encompass
a uniform search strategy to produce, automatically,
CCS verification plans under the equational approach.
Moreover, the resulting proof plan provides a uni-
form method to analyse CCS systems, regardless of
the size of their state space; it can plan a verification
of some problems involving finite-state systems and,
more importantly, value-passing, infinite-state, para-
meterised systems.

Conjecture

1

2

3

nil
nat

nil
nat

4 Buf Buf

5

6

unique

unique

where
member unique

member unique unique

Table 5. Example verification conjectures

References

[1] A. Armando, A. Smaill, and I. Green. Automatic synthesis
of recursive programs: The proof-planning paradigm. In
12th IEEE International Automated Software Engineering
Conference, pages 2–9, Lake Tahoe, Nevada, USA, 1997.

[2] A. Bundy. The use of explicit plans to guide inductive
proofs. In R. Lusk and R. Overbeek, editors, 9th Confer-
ence on Automated Deduction, pages 111–120. Springer-
Verlag, 1988. Longer version available from Edinburgh as
DAI Research Paper No. 349.

[3] A. Bundy. A science of reasoning. In J.-L. Lassez and
G. Plotkin, editors, Computational Logic: Essays in Honor
of Alan Robinson, pages 178–198. MIT Press, 1991. Also
available from Edinburgh as DAI Research Paper 445.

[4] A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and
A. Smaill. Rippling: A heuristic for guiding inductive
proofs. Artificial Intelligence, 62:185–253, 1993. Also
available from Edinburgh as DAI Research Paper No. 567.

[5] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The
Oyster-Clam system. In M. E. Stickel, editor, 10th Interna-
tional Conference on Automated Deduction, pages 647–648.
Springer-Verlag, 1990. Lecture Notes in Artificial Intel-
ligence No. 449. Also available from Edinburgh as DAI
Research Paper 507.

[6] F. Cantu, A. Bundy, A. Smaill, and D. Basin. Experiments
in automating hardware verification using inductive proof

planning. In M. Srivas and A. Camilleri, editors, Proceed-
ings of the Formal Methods for Computer-Aided Design
Conference, number 1166 in Lecture Notes in Computer
Science, pages 94–108. Springer-Verlag, 1996.

[7] S. Christensen, Y. Hirschfeld, and F. Moller. Decomposab-
ility, decidability and axiomatisation for bisimulation equi-
valence on basic parallel processes. In J. W. de Bakker, A. J.
Nijman, and P. C. Treleaven, editors, LICS’93, pages 386–
396, New York, 1993. IEEE Computer Society Press.

[8] R. Cleaveland, P. J., and B. Steffen. The concurrency work-
bench: A semantics-based verification tool for finite-state
systems. In Proceedings of the Workshop on Automated
Verification Methods for Finite-State Systems. Springer-
Verlag, 1989. Lecture Notes in Computer Science, v.407.
Also available from Edinburgh, as ECS-LFCS-89-83.

[9] M. Hennessy and H. Lin. Symbolic bisimulations. Theoret-
ical Computer Science, 138:353–389, 1995. Also available
from Sussex as Computing Science Technical Report 1/92.

[10] M. Hennessy and R. Milner. Algebraic Laws for Non-
determinism and Concurrency. Journal of the Association
for Computing Machinery, 32(1):137–161, 1985.

[11] Y. Hirshfeld, M. Jerrum, and F. Moller. A polyno-
mial algorithm for deciding bisimilarity of normed context-
free processes. Journal of Theoretical Computer Science,
158:143–159, 1996.

[12] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial
algorithm for deciding bisimulation equivalence of normed
basic parallel processes. Mathematical Structures is Com-
puter Science, To appear, 1996.

[13] R. Milner. Communication and Concurrency. Prentice Hall,
London, 1989.

[14] R. Monroy, A. Bundy, and I. Green. Annotated term rewrit-
ing for deciding observation congruence. In H. Prade,
editor, 13th European Conference on Artificial Intelligence,
ECAI’98, pages 393–397, Brighton, England, 1998. Wiley
& Sons. To appear.

